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Abstract

What makes people vote for an underdog? The common expectation is that people avoid
wasting their vote on a party with a small probability of being elected. Yet, many voters
choose to support underdogs and we still understand little about their motivations. We
argue that voters gauge the support for their preferred party in the voting population from
their social networks. When social networks exhibit the characteristics of echo chambers,
a feature observed in real-life political networks, voters with a strong preference for an
underdog tend to overestimate their chances of winning. We test this claim with voting
experiments in which some treatment groups receive signals from a simulated network. We
compare the effect of networks with a high degree of homogeneity against random networks.
Our findings suggest that homophilic networks can generate a positive effect on the level of
support for underdogs, which provides empirical evidence to back up anecdotal claims that
echo chambers foster the development of fringe parties.
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A large body of literature assumes that voters aim to affect electoral outcomes by choosing

strategically among parties large enough to gain representation. This requires somewhat accurate

information about the popularity of the competing parties or candidates. Many electoral contexts,

however, are characterized by poor information about the likely outcome, in particular since

polls are typically conducted at the national level while legislative seats are allocated at the

district level. In such circumstances, or when the accuracy of polls is uncertain, voters are likely

to rely on alternative sources of information when deciding how to cast their votes. Their social

networks represent one such option. Because networks are often characterized by homophily,

one consequence is that voters are liable to form inaccurate expectations about the popularity of

parties or candidates.

We advance that distortions introduced by social networks help explain why, in many

elections, a sizable share of the electorate supports a candidate or party with little hope of

winning a seat—a party that could be considered an ‘underdog’. Even in an established

democracy like Canada, where the plurality system is expected to generate two-party races at

the district level, over 21% of the votes cast during the last general election of 2015 were for a

third-party candidate.1 Similarly, in proportional representation (PR) systems, more than one

in nine voters voted for parties that failed to gain representation in the 2013 Icelandic election

(Indridason et al., 2017) and nearly one in six voters during the 2015 Polish election (Jasiewicz

and Jasiewicz-Betkiewicz, 2016).

This paper proposes a novel explanation for the willingness of voters to support underdogs.

Rather than ruling out this behavior as an anomaly, we build on the fact that voters rarely

possess the information about party support needed to vote strategically. We represent the

voter’s dilemma as a coordination game in which players must draw inferences about whether

a small party (the underdog) is viable enough to gain representation. We argue that voters

rely on the signals they receive from their social networks as a cheap source of information to

1Third-party candidates are those not among the two front-runners in each district. Data from the Library of

Parliament: https://lop.parl.ca/sites/ParlInfo/default/en CA/ElectionsRidings/Elections (accessed December 18,

2018).
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solve their coordination problem. When networks are reinforcing—that is, characterized by

assortative mixing (also called homophily or echo chambers) (McPherson et al., 2001; Bakshy

et al., 2015)—as is often observed in real-life networks, strong supporters tend to overestimate

the chances of the underdog winning. We test this model using laboratory experiments in which

participants are randomly assigned to a network, some of them receiving information about the

political preferences of their peers. Our results support the view that network information can

influence the decision to support underdogs, by affecting voter perceptions about their chances

of success.

Exploring how social networks affect the vote is particularly relevant given the growing role

of social media in politics, which has reemphasized an earlier body of work documenting the

influence of peer networks on political behavior (Huckfeldt and Sprague, 1995; Mutz, 2006;

Sinclair, 2012; Ahn et al., 2014). Not only have social media expanded the size of individuals’

social networks, and the frequency and ease with which individuals interact, they have also

made it easier to connect with like-minded individuals. There is ample evidence that online

networks reproduce (or amplify) the assortative mixing observed in real-life networks (Colleoni

et al., 2014; Bakshy et al., 2015; Eady et al., 2019). Empirical findings remain mixed, however,

regarding the consequences of these ‘echo chambers’, for instance their potential impact on the

decline of deliberative politics, the fomentation of extreme ideology, and political polarization

(Farrell, 2012; Lee et al., 2014; Colleoni et al., 2014; Barberá et al., 2015; Flaxman et al., 2016;

Bail et al., 2018; Eady et al., 2019).

In this study, we examine whether reinforcing networks can lead voters to make biased

inferences about the viability of small parties. The proposed mechanism sheds light on the

purported link between echo chambers and the support for fringe parties. Our findings represent

a novel contribution to the literature on social networks and political behavior (see, e.g., Sokhey

and McClurg, 2012; Bond et al., 2012; Santoro and Beck, 2017). Many studies of political

networks have focused on two-party systems (see, e.g., Zuckerman et al., 1994; Huckfeldt and

Sprague, 1995),2 where opportunities for strategic voting rarely arise, or examined network

2A notable exception is Beck (2002), which examined support for Perot in the 1992 presidential election.
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effects on other types of outcomes such as political participation (McClurg, 2003, 2006; Großer

and Schram, 2006; Battaglini et al., 2008; Gil de Zúñiga et al., 2012; Tufekci and Wilson, 2012;

Boulianne, 2015), the impact of elite communication on the formation of opinions (Ahn et al.,

2014; Siegel, 2009, 2013), and “correct voting” (Ryan, 2011; Pietryka, 2016). We expand on

this literature by focusing on vote choice, specifically in multi-party systems where voters face a

different challenge in the form of coordination problems.

Theoretical Considerations

We focus our attention on a setting in which voters have narrowed their possible choices to

two parties. In doing so, we seek to zero in on situations where strategic voting is possible:

voters facing a choice between a preferred party with limited chances of gaining representation

(the underdog), and a second preference that is viable (the safe option). This is a scenario that

often occurs, e.g., in elections under proportional representation where one of two ideologically

similar parties is at risk of not reaching the threshold for representation. For example, if a

Portuguese voter sincerely prefers the newly-formed Alliance Party but the party is at risk of

not gaining seats in her district, the voter faces a dilemma between supporting the underdog or

rallying around the safer option, the Social Democratic Party. As in many real-life campaigns,

we assume that each voter is uncertain about the preferences of other voters.

This decision problem can be represented as a n-player coordination game. The underdog

has a chance of winning if enough voters coordinate their efforts on their sincere preference.

On the other hand, voting for the underdog when other voters fail to do the same implies a

wasted vote—the viable second-preferred party would have done better had everyone voted for

it. Table 1 presents the payoff structure for this problem. We assume that voters differ in their

preference for the underdog. We denote the strength of this preference with the variable xi, and

assume it is drawn randomly from a uniform distribution. Casting a vote for a party that gains

representation yields a constant payoff of c; in effect this is the value of not wasting one’s vote.

When the underdog receives enough votes to win representation (at least equal to some threshold

T ), the voter’s total payoff is the sum c + xi. A voter choosing the underdog when it fails to
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Table 1: Payoff structure

Underdog does not
gain representation

Underdog
gains representation

Vote Underdog (U) xi c+ xi

Vote Safe Option (S) c c+ xi

win representation only receives a payoff of xi. Thus, in choosing the underdog, a voter has a

chance of getting the maximum payoff of c + xi, but also risks only receiving a payoff of xi.

The voter’s other option, which we refer to as the safe option, is to vote for the viable party,

which guarantees a minimum payoff of c. We assume voters assign greater value to not wasting

their vote than expressing a sincere preference, i.e., xi < c.

This game resembles the stag hunt, a coordination game with two pure-strategy equilibria:

one in which the voters coordinate on the risky option for a higher payoff (xi + c), and one in

which the voters choose the safe option for a certain but lower payoff (c). The voters in our

model face the same type of coordination problem. It departs from a pure spatial model of

candidate competition, in that it incorporates an element of expressive support while retaining

the essential features of the coordination problem in the stag hunt. We do so for two reasons.

First, expressive support strikes us as a reasonable motivation for voters and, in particular,

supporters of parties that might be considered underdogs. Part of the rationale for supporting

underdogs is to protest against the more mainstream alternatives, and there has been an upsurge

in research on expressive voting of late (for an overview, see Hamlin and Jennings, 2019).

Second, these payoffs provide the simplest possible formulation for the coordination problem

faced by supporters of underdog parties. A first equilibrium arises in which all voters choose

the safe option; switching the vote to the underdog reduces the voter’s payoff from c to xi. In

a second type of equilibrium, at least T voters choose the underdog, where T is the threshold,

i.e., the number of votes needed for representation. In such scenarios, no voters can improve

their payoff by modifying their decision, and players achieve a Pareto-efficient outcome c+ xi.

Experimental evidence on stag hunt games suggest a tendency for players to coordinate on the

safe option (Skyrms, 2013).

Our main contribution is to consider social networks as a mechanism for equilibrium
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selection. If voters possess information on the preferences xj of individuals with whom they

share connections in the network, they may use this information to infer the likelihood of

coordination on the risky option. The network signals reproduce the opinions that voters in a

real-life setting would observe on social media, for instance, by reading comments from their

friends or followers. As discussed earlier, social networks are usually not random, which may

distort perceptions of the likelihood that voters will coordinate on the underdog. Our central

claim is that network information is a key mechanism used by voters to decide between risky

and safe choices in elections.3

Building upon this discussion, we offer two hypotheses. The first concerns the influence

of homophilic networks on equilibrium selection. In presence of network signals revealing

the preferences of other voters (xj), we expect that a voter is more likely to coordinate on the

underdog when she observes a strong preference for the candidate in her network, compared to

the control condition (Hypothesis 1). In contrast, signals coming from a random network provide

no cues that help solve the coordination problem. Thus, we expect no difference in behavior

between voters receiving signals from a random network and where no network information is

available (Hypothesis 2).

Experimental Design

We designed a laboratory voting experiment in which participants choose between two parties

competing in simulated elections: Party S (the Safe Option) and Party U (the Underdog). The

experiment was conducted in a computer lab on May 29, 2018. We recruited 96 participants in

total, 24 for each session. The participants were randomly assigned into subgroups of 6 voters

for each election. We informed participants that the Underdog must receive at least 5 out of 6

votes to get elected. Before each election, each voter was assigned a random number (from a

discrete uniform distribution ranging from 1 to 9) representing the strength of preference for the

3Our setup defines an underdog as a party that has some theoretical chance of achieving representation, albeit a

marginal one. The model could be extended to situations where an underdog does not actually have a theoretical

chance to win, even when all of its supporters vote sincerely.
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Underdog (xi). Thus, as the distribution of preferences and subgroups of six voters change each

round, the voters face a new electorate every time they vote. We set the constant invoked in the

theory section to c = 10. The participants voted in 20 consecutive elections.

To examine the effects of social networks on coordination, we considered two network

treatments along with a control condition. The participant was randomly assigned to one

condition. In the control group, the participants receive no information about other voters.

Participants are informed about the existence of randomized private values, but they do not

observe the private values of other participants. In the first treatment (random network) group,

each voter observes the private values of two randomly selected peers among the six voters

participating in the election. In the second treatment group (homophilic network), the network

ties are reinforcing. We partition the voters so that the three participants with the highest xi

values are grouped together, with the other three participants forming another group. Voters

observe the private values of the voters within their network who are similar to their own

(see Figure 1). This simulates the phenomenon of assortative mixing, whereby voters who

share similar attributes are more likely to develop network ties. The online appendix provides

additional information about the experimental design, along with descriptive statistics and

balance checks.

Figure 1: Information in Homophily Treatment
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Findings

We start by examining the baseline rates of support for the underdog party across experimental

groups. Table 2 reports shows that the underdog (Party U) is chosen roughly 20% of the

time by participants assigned to the control group. This proportion increases to about 25%

in the homophilic treatment (p = 0.12; bootstrapped cluster-robust p-value). However, the

comparison obscures the actual effect of homophily as our treatment generates two groups of

participants. The fourth and fifth rows report the same cross-tabulation, this time by contrasting

the participants whose network contained the three lowest payoffs for selecting the underdog

(which we label “Low Signal”) and those with the high payoffs (“High Signal”). When exposed

to a network of voters who have a strong preference for the underdog, the tendency to vote for

that party doubles, to 43%.

Table 2: Cross-tabulation of the vote for the underdog, by experimental group

Vote Choice

Safe Option (S) Underdog (U)

Control 79.58% 20.42%
Random Network 78.75% 21.25%
Homophilic Network 74.79% 25.21%

Low Signal 92.29% 7.71%
High Signal 57.29% 42.71%

All 76.98% 23.02%

Observations 1,920

Conversely, when the signal received from the network indicates weaker support, participants

are much more likely to select the safe option, in which case the overall support for the underdog

drops below 8%. Once private signals (xi) are controlled for, however, a network of players with

weak preferences for the underdog does not behave differently from the control group (see Table

3 and discussion below). Our experimental design also affords us the opportunity to contrast

reinforcing networks with random networks. The underdog vote share in the random network

treatment is 21%, which is statistically indistinguishable from the control group (p = 0.80).

This is consistent with our second hypothesis.

The results support the principal contention made in this paper. When real-life social
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networks are composed of individuals who think alike, voters with a strong preference for an

underdog party receive a signal that may overstate the overall strength of support for that option.

In turn, this signal increases the likelihood of voting for the underdog. Our claim is that this

phenomenon is a key mechanism explaining the paradox of voters who “fail” to defect from

non-viable candidates. In game-theoretic parlance, social networks appear to serve as a tool

for equilibrium selection. However, as illustrated by the strikingly different patterns between

the homophilic and random treatments, the network itself provides no useful information for

coordination when network connections are random. Signals need to be one-sided, as one would

expect inside networks with the characteristics of echo chambers.

Table 3 reports logistic regressions of the binary decision to vote for the underdog, with

cluster-robust standard errors (where clusters are the individual participants). The models

include the treatment variables, in addition to a time trend. As rounds progress, the overall

share of participants selecting the risky option decreases, suggesting that participants adjust

their behavior after observing that the underdog rarely wins. The second model controls for the

individual preference for the underdog xi (the private signal). The third model adds a control

variable measuring the general risk preference of respondents measured on a 0-10 scale (Dohmen

et al., 2010). These models support the conclusions outlined above. The likelihood of selecting

the underdog is greater under the homophilic treatment with high signals (using the control

group as a base category), everything else being equal, a result that is statistically significant at

conventional levels.

The results illustrate why homophilic networks tend to benefit underdogs in the aggregate.

Once the individual payoffs are taken into account (Models 2 and 3 from Table 3), the treatment

effect is statistically significant only for the subgroup receiving high signals from the homophilic

network. In other words, voters are equally likely to choose the safe option when their own

sincere preference for the underdog is weak, regardless of whether or not they are informed

of the reinforcing preferences of their network. This finding is consistent with the observed

tendency of players to choose the safe option in previous stag hunt game experiments (Skyrms,

2013). On the other hand, when the network brings together voters with a strong preference
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Table 3: Treatment Effects (Logistic Regressions with Cluster-Robust Standard Errors)

Vote Choice (Underdog=1)

Model 1 Model 2 Model 3

Homophilic Network (Low Signal) −1.178∗∗∗ −0.001 0.078
(0.284) (0.307) (0.291)

Homophilic Network (High Signal) 1.167∗∗∗ 0.647∗ 0.751∗∗

(0.209) (0.270) (0.260)
Random Network 0.054 0.177 0.352

(0.284) (0.329) (0.305)
Private Signal 0.539∗∗∗ 0.559∗∗∗

(0.052) (0.051)
Tolerance to Risk 0.255∗∗∗

(0.060)
Round −0.118∗∗∗ −0.148∗∗∗ −0.157∗∗∗

(0.014) (0.016) (0.018)
Constant −0.252 −3.180∗∗∗ −4.737∗∗∗

(0.197) (0.359) (0.548)

Observations 1,920 1,920 1,920
Participants (Clusters) 96 96 96
Nagelkerke’s R2 0.221 0.402 0.433

The table reports the output of logistic regression models computed with bootstrapped, cluster-robust standard
errors, where clusters represent the participants. The base category for treatment effects is the control group.

Standard errors are in parentheses. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

for the underdog, networks have a significant impact on the decision to coordinate on the risky

option. In that case, we estimate the (conditional) average treatment effect, using the difference

in predicted probabilities between the homophilic treatment with high signal and the control

group, to be around 14 percentage points (see the appendix for an extended discussion). The

fact that homophilic networks induce stronger coordination effects in the high-signal group

explains why, when considering the homophilic treatment group as a whole (i.e., both those

receiving high and low signals), the support for the underdog is higher overall than in the other

two comparison groups.

Concluding Remarks

We examined the impact of social networks on the support for underdogs using laboratory

experiments. We expected that network information would affect evaluations of the underdog’s

chance of winning, in particular when a voter belongs to a reinforcing network where other

voters share strong preferences for the underdog. We find clear evidence supporting the existence
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of such an effect. In other words, a promising explanation for people choosing to ‘waste’ their

vote on underdog candidates in real-world elections is that their social network may lead them

to overestimate vote intentions for that alternative. In our experiments, the tendency to vote

for underdogs is significantly higher for voters receiving signals from a reinforcing network of

strong supporters, when compared to scenarios without network information and where network

connections are random. Our results thus suggest that social networks have important effects

on strategic voting, but these effects only arise when networks have the characteristics of echo

chambers. A substantive implication for the study of democracy is that echo chambers can foster

support for fringe parties, consistent with recent claims suggesting that social media may spur

the growth of extremist ideologies (see, e.g., Flaxman et al., 2016).
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Supplementary Materials

Additional Information on Experimental Design

We conducted the experimental sessions in the computer lab of WULABS at the Vienna

University of Economics and Business, Austria on May 29, 2018. The experimental module was

programmed using the oTree library, a web-based platform using the Python Django framework

(Chen et al., 2016). The project received ethics approval from the Institutional Review Board of

the University of California, Riverside (protocol HS-17-131).

In total, we ran four sessions of 24 players per session. Participants were recruited from

the lab’s student pool and consisted mainly of first-year business school students. We used the

laboratory’s standard recruitment procedures, inviting 32 individuals per session by email. The

participants who showed up were greeted by a research assistant and randomly assigned a card

corresponding to a computer upon arrival, in order to avoid selection biases such as early or late

show ups. As the experiment was designed for 24 participants, invited individuals who were not

selected to participate were awarded a show-up fee of 5 Euros. The selected participants gave

their consent by signing an electronic form that stated the purpose and main procedures of the

game. Each session took approximately 45 minutes to complete.

Each experimental session began with an introduction to the electoral scenario. We informed

participants that two parties are facing each other (called A and B during the experiment),

and that the election results would be determined by the choices made by sub-groups of six

participants. The payoff structure was explained with a concrete example. Note that in the

manuscript and below, we relabel the parties S and U for simplicity, to emphasize which one

represents the ‘safe option’ and which one is the underdog.

Consistent with the structure introduced in Table 1 of the main text, the lowest payoff occurs

when a participant votes for the Underdog and the party receives fewer than five votes, in which

case they receive only the payoff associated with xi, a random number between 1 and 9. Voting

for the safe option, Party S, yields a minimum reward of 10. Finally, the highest reward is

achieved when the Underdog reaches the threshold (5 out of 6 votes or more), in which case the
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participant receives c+ xi, the constant plus the random number they have been assigned (for a

total payoff between 11 and 19).

Half of the 24 participants in each session were randomly assigned to one of two treatment

conditions (among the three types, i.e., control, random, or homophilic network). Within

each treatment condition, the twelve participants were randomly assigned to sub-groups (or

electorates) of six voters for each round of the experiment. Thus, each election comprised a new

electorate of six voters.The participants were informed about this procedure on the computer

screens before each election. After each round, or election, we informed players about the result

of the election and the payoff they received. The payoffs collected through the 20 rounds were

converted to monetary rewards at the end of the experiment (100 points in the game correspond

to 5 Euros). Participants were rewarded 9 Euros on average.

Upon completion of the twenty rounds, we asked participants to fill a short survey and

informed them of their total gains. The questions measured basic socio-demographic variables.

The survey also included an item evaluating their predisposition toward risk, using a question

proposed by Dohmen et al. (2010). This survey question reads “How willing are you to take

risks in general?” and asks respondents to report their willingness on a 0-10 scale.

Table A1 provides descriptive statistics for the survey variables. We also conducted balance

checks to verify that randomization into treatment conditions produced covariate balance. We

report the results in Table A2. The models in Table A2 are logistic regressions with the treatment

assignment as a dependent variable. Except for one covariate (gender in the random network

treatment group), the covariates appear unrelated to the treatments. We replicated the main

models presented in the paper with demographic covariates as controls, and the results are

substantively the same. Finally, we report screenshots of the experimental module in Figures

A1-A5 below.
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Table A1: Descriptive Statistics

Variable Category/Statistic Value

Experimental Group
Control 24

Random network 24

Homophilic network 48

Age
18-24 years old 73

25-34 years old 22

35-44 years old 1

Gender
Female 63

Male 33

Education

High school degree 50

Some higher education 13

Bachelor degree 26

Above bachelor 7

Tolerance to Risk
Mean 5.375

Std. Deviation 1.98

Total Sample 96

The table presents descriptive statistics for the sample of experimental participants, across all sessions.
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Table A2: Balance Checks

Treatment Group

Homophilic Network Random Network

Aged 25 and above −1.237 0.469

(0.643) (0.764)

Bachelor degree 0.477 −0.227

(0.990) (1.063)

High school degree −0.220 1.019

(1.036) (1.126)

Some higher education −0.053 −0.175

(1.152) (1.355)

Gender = Male −0.448 1.647∗∗

(0.468) (0.560)

Tolerance to risk −0.006 −0.181

(0.110) (0.130)

Constant 0.467 −1.460

(1.251) (1.377)

Observations 96 96

Log Likelihood −62.882 −47.352

Akaike Inf. Crit. 139.764 108.703

The table reports binary logistic regressions with the treatment group assignment as a dependent variable. Standard
errors are in parentheses. ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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Figure A1: Instructions (Screen 1)
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Figure A2: Homophily Treatment (Screen 2)
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Figure A3: Random Treatment (Screen 2)
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Figure A4: Control Treatment (Screen 2)
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Figure A5: Results Example (Screen 3)
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Additional Results

This section provides additional results in support of the empirical findings presented in the

main text. The two subgroups in the homophilic treatment are defined in terms of the private

payoffs (the xi variable), to reproduce the shared affinities of voters in reinforcing networks. A

rigorous test of our hypotheses would consist of estimating treatment effects for a constant xi,

as we did in the multivariate models presented in the main text. Put another way, the conditional

average treatment effect corresponds to

E[yi(1)− yi(0)|xi]

where yi(1) is the binary vote choice in the treatment group and yi(0) in the control group. This

quantity isolates the effect of network information from the effect of the voter’s strength of

preference for the underdog. Table A3 below reports cross-tabulations based on subsamples of

participants: we compute the proportion of underdog votes only for participants with xi > 5 for

the High Signal treatment, and only for participants with xi < 5 in the Low Signal treatment.

Table A3: Cross-tabulation of the vote for the underdog, for restricted subsamples

Vote Choice

Safe Option (S) Underdog (U)

Subsample: xi < 5

Control 94.47% 5.53%

Homophilic Treatment (Low Signal) 94.92% 5.08%

Observations 593

Subsample: xi > 5

Control 63.60% 36.40%

Homophilic Treatment (High Signal) 49.31% 50.69%

Observations 591

Once the individual payoffs are taken into account, the difference in proportions is statistically

significant only for the subgroup receiving high signals from the homophilic network. In other
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words, voters are equally likely to choose the safe option when their own sincere preference

for the underdog is weak, whether or not they observe reinforcing preferences in their network

(p ≈ 0.85; bootstrapped cluster-robust p-value). As mentioned in the main text, this finding

is consistent with the observed tendency of players to choose the safe option in previous stag

hunt game experiments (Skyrms, 2013). On the other hand, when the network brings together

voters with a strong preference for the underdog, network signals have a significant impact on

the decision to coordinate on the underdog. In that case, the (conditional) average treatment

effect is roughly 14.3 percentage points (p ≈ 0.01). The fact that homophilic networks induce

stronger coordination effects in the latter group explains why, when considering the homophilic

treatment group as a whole (i.e., both those receiving high and low signals), the support for the

underdog is higher overall than in the other two comparison groups (Table 2 of the main text).

The logistic regressions in Table 3 of the main text report a similar finding, while also

controlling for risk tolerance and the round of the experiment. Holding constant the private

signal xi to 5 and the round to 5, the difference in the predicted probability of voting for the

underdog, contrasting the homophily (high signal) with the control group, is 14.1 percentage

points (see Table A4). The difference varies from 5.4 to 18.2 percentage points when changing

the value of the private signal of the participant from 2.5 to 7.5, respectively.

Table A4: Difference in Predicted Probabilities (Table 3, Model 3)

xi Homophily (High) Control Difference

5.0 0.331 0.190 +0.141
2.5 0.109 0.055 +0.054
7.5 0.668 0.486 +0.182

The table reports predicted probabilities of voting for the Underdog under two treatment conditions, as well as the
difference in predicted probabilities between groups, computed from Model 3, Table 3 in the main text. The

probabilities are calculated after setting the level of risk tolerance to the middle of the scale (the value of 5), the
round number to 5, and by varying the value of the private signal xi and the treatment condition.

Note that our design ensures that the distribution of preferences is the same across all

treatment groups. Even when participants received a signal that two peers also have a high

payoff for selecting the underdog, the ex-ante distribution of payoffs remained exactly the same

as that used in the other treatment groups. In short, the homophilic treatment should have
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Figure A6: Vote for underdog by experimental group and round
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little impact on purely rational grounds, as it changes nothing about the baseline calculations.

Moreover, we randomized individual payoffs at every single election, such that participants

observed first hand that the assignment of a high or low payoff was equally likely. Nonetheless,

we still observe a clear difference in behavior between treatment conditions across rounds.

Figure A6 plots the distribution of support for the underdog over time. Although learning effects

are noticeable, the tendency to use homophilic network signals for equilibrium selection appears

to last for the duration of each session.

24



References
Chen, Daniel L., Martin Schonger, and Chris Wickens (2016). oTree: An open-source platform

for laboratory, online, and field experiments. Journal of Behavioral and Experimental
Finance 9, 88–97.

25


